Химические свойства глюкозы качественная реакция. Химические свойства глюкозы. Реакции по карбонильной группе

а) реакция серебряного зеркала. Образуется соль глюконовой кислоты.

б) реакция с гидроксидом меди (II ) при нагревании. Образуется глюконовая кислота.

в) Глюкозу также можно окислить до глюконовой кислоты бромной водой, хлором, азотной кислотой (разб.):

г) Каталитическое гидрирование глюкозы – происходит восстановление карбонильной группы до спиртового гидроксила, получается шестиатомный спирт – сорбит.

д) С NaHSO 3 – НЕ реагирует!!!

4. Реакции брожения.

а) спиртовое брожение C 6 H 12 O 6  2C 2 H 5 OH + 2CO 2 этанол

б) молочнокислое брожение C 6 H 12 O 6  2CH 3 -CH(OH)-COOH молочная кислота

в) маслянокислое брожение C 6 H 12 O 6  C 3 H 7 COOH + 2CO 2 + 2H 2 O масляная кислота

5. Реакции образования эфиров глюкозы.

Глюкоза способна образовывать простые и сложные эфиры. Наиболее легко происходит замещение полуацетального (гликозидного) гидроксила:

Простые эфиры получили название гликозидов.

В более жестких условиях (например, с CH 3 - I ) возможно алкилирование и по другим оставшимся гидроксильным группам.

Моносахариды способны образовывать сложные эфиры с карбоновыми кислотами (реакция проходит с ангидридами, а не с самими кислотами) и с минеральными кислотами.

6. Реакция горения глюкозы.

C 6 H 12 O 6 + 6О 2  6CO 2 + 6H 2 O

Фруктоза

Это структурный изомер глюкозы - кетоноспирт:

СН 2 - СН- СН- СН - С - СН 2

OH OH OH OH O OH

Кристаллическое вещество, хорошо растворимое в воде, более сладкое, чем глюкоза. В свободном виде содержится в мёде и фруктах.

Химические свойства фруктозы обусловлены наличием кетонной и пяти гидроксильных групп. Так же, как и глюкоза, реагирует с гидроксидом меди (ярко-синий раствор) без нагревания; образует простые и сложные эфиры, горит. При гидрировании фруктозы также получается СОРБИТ . С бромной водой, С u (OH ) 2 при нагревании, аммиачным раствором оксида серебра – не реагирует.

Дисахариды

Дисахариды – это углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой).

    Сахароза (свекловичный или тростниковый сахар ) С 12 Н 22 О 11

Молекула сахарозы состоит из остатков α-глюкозы и β-фруктозы, соединенных друг с другом.

В молекуле сахарозы гликозидный атом углерода глюкозы СВЯЗАН, поэтому она не образует ОТКЫТУЮ (альдегидную) форму.

Вследствие этого сахароза не вступает в реакции альдегидной группы – с аммиачным раствором оксида серебра с гидроксидом меди при нагревании . Подобные дисахариды называют невосстанавливающими , т.е. не способными окисляться.

Сахароза реагирует с Сu(OH) 2 без нагревания (ярко-синий раствор), с Са(ОН) 2 (образуется сахарат кальция).

Сахароза подвергается гидролизу подкисленной водой:

С 12 Н 22 О 11 + Н 2 О  С 6 Н 12 О 6 (глюкоза) + С 6 Н 12 О 6 (фруктоза)

Доброе время суток, уважаемые десятиклассники!

Мы начинаем знакомиться с новой группой органических соединений - углеводами.
Углеводы... А это те самые сладости, которые вы так любите, (фрукты, торты, конфеты, варенье, шоколад и т.д., особенно много углеводов содержит виноград). Углеводы жизненно важные вещества, которые необходимы каждому организму. Эти вещества расходуются, и человек должен постоянно пополнять их запасы. Понятно, что вещества, входящие в состав тканей организма, не похожие на те, которые он употребляет в пищу. Организм человека перерабатывает пищевые продукты и в процессе своей жизнедеятельности постоянно расходует энергию, которая, как мы знаем, выделяется при окислении в тканях организма, углеводы входят в состав нуклеиновых кислот, осуществляющих биосинтез белка и передачу наследственных признаков.
Животные и человек не синтезируют углеводы. В зеленых растениях при участии хлорофилла и солнечного света осуществляется ряд процессов преобразования поглощенной из воздуха углекислого газа и впитанной из почвы воды. Конечным продуктом этих процесса – фотосинтеза, является сложная молекула углевода.


Углеводы – важный источник энергии для организма, участвуют в обмене веществ. Основными источниками углеводов являются растительные продукты.

Физиологи установили, что при физической нагрузке, которая в 10 раз превышает привычную, человек, соблюдающий жировую диету, лишается сил уже через полчаса. А вот углеводная диета позволяет выдержать такую же нагрузку в течение четырех часов. Оказывается, получение организмом энергии из жиров – процесс длительный. Это объясняется малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы же, хотя и дают меньше энергии, чем жиры, однако выделяют ее намного быстрее. Поэтому, если предстоит основательная нагрузка, предпочтительнее подкрепиться сладким, а не жирным.

Классификация углеводов.

Углеводы – обширный класс природных соединений.
Обратимся к схеме 1. “Классификация углеводов”. В зависимости от числа остатков моносахаридов в молекуле делятся на моносахариды, дисахариды и полисахариды.

Моносахариды (простые углеводы) – углеводы, которые не гидролизуются. В зависимости от числа атомов углерода подразделяются на триозы, тетрозы, пентозы, гексозы. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов. Наиболее важны для человека сахароза, мальтоза и лактоза.
Полисахариды – высокомолекулярные соединения – углеводы, которые гидролизуются с образованием множества молекул моносахаридов.
Они делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте. К перевариваемым относят крахмал и гликоген , из вторых для человека важны клетчатка, гемицеллюлоза и пектиновые вещества .
Углеводы часто называют сахаристыми веществами или сахарами . Они могут быть безвкусными, сладкими и горькими. Если сладость раствора сахарозы принимать за 100 %, то сладость фруктозы – 173 %, глюкозы – 81 %, мальтозы и галактозы – 32 %, лактозы – 16 %.

Качественный состав углеводов.


Углеводы органические соединения, состоящие из углерода, водорода и кислорода, причем водород и кислород входят в соотношении (2: 1) как в воде, отсюда и название.

На основе этой аналогии русский химик К. Шмидт в 1844 г. предложил термин углевода (углерод и вода), а общая формула углеводов Сn(Н 2 О) m
Итак, важнейшим представителем моносахаридов является глюкоза. При изучении, каких некоторых тем мы встречались с вами с этим веществом в курсе химии и биологии: химия – альдегиды, спирты; биология – фотосинтез, строение клетки.

Получение глюкозы.

1. Реакция фотосинтеза.

6СО 2 + 6H 2 O –> С 6 Н 12 О 6 + 6О 2 +Q

2. Реакция полимеризации.

3. Гидролиз крахмала.

(С 6 Н 10 О 5) n + nH 2 O –> nС 6 Н 12 О 6

Физические свойства:

бесцветное кристаллическое вещество, хорошо растворимо в воде, сладкое на вкус, температура плавления 146 о С.


Строение молекулы глюкозы. Изомерия.

Вывод: таким образом, глюкоза – альдегидоспирт, точнее – многоатомный альдегидоспирт. Установлено, что в растворе глюкозы находится не только её альдегидная форма; но и молекулы циклического строения.
Установлено, что у третьего атома углерода группа – ОН расположена иначе, чем у других атомов углерода распространённое строение глюкозы выглядит так:

Превращение молекулы линейного строения в молекулу циклического строения объяснимо, если вспомнить что атомы углерода могут вращаться вокруг сигма -связей. Альдегидная группа может приблизиться к гидроксильной группе 5-го атома углерода, поскольку атом кислорода карбонильной группы несёт на себе частичный – заряд, а атом водород гидроксильной группы – частично + заряд.

Осуществляется своеобразный химический процесс: происходит разрыв -связи карбонильной труппы, к атому кислорода присоединяется атом водорода, а атом кислорода гидроксильной группы с атомом углерода замыкают цепь. Циклические формы находятся в равновесии, превращаясь альфа и бетту форму. Таким образом, в водном растворе глюкозы находятся три изомерные формы . Молекула кристаллической глюкозы альфа -форма, при растворении в воде – открытая форма, а затем снова циклическая бетта-форма. Такая изомерия называется динамической (таутомерия) .

Химические свойства глюкозы.
Моносахариды вступают в химические реакции, свойственные карбонильной и гидроксильной группам.

1) Реакция “серебряного зеркала”
Доказать наличие альдегидной группы в глюкозе можно с помощью аммиачного раствора оксида серебра. Эта реакция называется реакцией серебряного зеркала. Ее используют как качественную для открытия альдегидов . Альдегидная группа глюкозы окисляется до карбоксильной группы. Глюкоза превращается в глюконовую кислоту.
СН 2 ОН – (СНОН) 4 – СОН + Ag 2 O = СН 2 ОН – (СНОН) 4 – СООН + 2Ag
(Реакцию серебряного зеркала используют в промышленности для серебрения зеркал, изготовления колб для термосов, елочных украшений).



2) Взаимодействие глюкозы с гидроксидом меди (II)





3) Гидрирование глюкозы

Альдегидная группа может быть восстановлена в гидроксильную группу действием водорода в присутствии катализатора.


4) Специфические свойства. Большое значение имеют процессы брожения глюкозы, происходящие под действием органических катализаторов-ферментов (они вырабатываются микроорганизмами).

а) спиртовое брожение (под действием дрожжей)

С 6 Н 12 О 6 = 2С 2 Н 5 ОН + 2СО 2

б) молочнокислое брожение (под действием молочнокислых бактерий)
в кондитерской промышленности при изготовлении мягких конфет, десертных сортов шоколада, тортов и различных диетических изделий;
  • в хлебопечении глюкоза улучшает условия брожения, придает пористость и хороший вкус изделиям, замедляет очерствение;
  • в производстве мороженого она занижает точку замерзания, увеличивает его твердость;
  • при производстве фруктовых консервов, соков, ликеров, вин, безалкогольных напитков, так как глюкоза не маскирует аромата и вкуса;
  • в молочной промышленности при изготовлении молочных продуктов и продуктов детского питания рекомендуется использовать глюкозу в определенной пропорции с сахарозой для придания этим продуктам более высокой питательной ценности;
  • в ветеринарии;
  • в птицеводстве;
  • в фармацевтической промышленности.

Кристаллическую глюкозу целесообразно использовать для питания больных, травмированных, выздоравливающих, а также людей, работающих с большими перегрузками.

Медицинскую глюкозу применяют в антибиотиках и других лекарственных препаратах, в том числе для внутривенных вливаний, и для получения витамина С. Техническая глюкоза находит применение в качестве восстановителя в кожевенном производстве, в текстильном – при производстве вискозы, в качестве питательной среды при выращивании различных видов микроорганизмов в медицинской и микробиологической промышленности .




Закрепление:


Углеводы — органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода. Причем, водород и кислород в них стоит в тех соотношениях, что и в молекулах воды (1:2)
Общая формула углеводов C n (H 2 O) m , т. е. они как бы состоят из углерода и воды, отсюда и название класса, которое имеет исторические корни. Оно появилось на основе анализа первых известных углеводородов. В дальнейшем было установлено, что имеются углеводы, в молекулах которых нет соотношения 1H: 2O, например, дезоксирибоза — C 5 H 10 O 4 . Известны так же органические соединения, состав которых подходит к приведенной общей формуле, но которые не принадлежат к классу углеводов. К ним относятся, например формальдегид CH 2 O и уксусная кислота CH 3 COOH.
Однако, название «углеводороды» укоренилось и является общепризнанным для этих веществ.
Углеводороды по их способности гидролизоваться можно разделить на три основные группы: моно-, ди- и полисахариды.

Моносахариды — углеводы, которые не гидролизуются (не разлагаются водой). В свою очередь, в зависимости от числа атомов углерода. Моносахариды подразделяются на триозы (молекулы которых содержат три атома углерода), тетрозы (четыре атома), пентозы (пять), гексозы (шесть) и т. д.
В природе моносахариды предоставлены преимущественно пентозами и гексозами . К пентозам относятся, например, рибоза C 5 H 10 O 5 и дезоксирибоза (рибоза, у которой «отняли» атом кислорода) C 5 H 10 O 4 . Они входят в состав РНК и ДНК и определяют первую часть названий нуклеиновых кислот.
К гексозам, имеющим общую молекулярную формулу C 6 H 12 O 6 , относятся, например, глюкоза, фруктоза, галактоза.
Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов, например гексоз. Общую формулу подавляющего большинства дисахаридов вывести несложно: нужно «сложить» две формулы гексоз и «вычесть» из получившейся формулы молекулу воды – C 12 H 22 O 10 . Соответственно, можно записать и общее уравнение гидролиза:

C 12 H 22 O 10 + H 2 O → 2C 6 H 12 O 6
К дисахаридам относятся:
1) Сахароза (обычный пищевой сахар), которая при гидролизе образует одну молекулы глюкозы и молекулу фруктозы. Она содержится в большом количестве в сахарной свекле, сахарном тростнике (отсюда и названия – свекловичный и тростниковый сахар), клене (канадские первопроходцы добывали кленовый сахар), сахарной пальме, кукурузе и т. д.

2) Мальтоза (солодовый сахар), которая гидролизуется с образованием двух молекул глюкозы. Мальтозу можно получить при гидролизе крахмала под действием ферментов, содержащихся в солоде, — пророщенных, высушенных и размолотых зернах ячменя.
3) Лактоза (молочный сахар), которая гидролизуется с образованием молекул глюкозы и галактозы. Она содержится в молоке млекопитающих, обладает невысокой сладостью, и используется, как наполнитель в драже и аптечных таблеток.

Сладкий вкус разных моно- и дисахаридов различен. Так, самый сладкий моносахарид – фруктоза — в 1,5 раза слаще глюкозы, которую принимают за эталон. Сахароза (дисахарид), в свою очередь в 2 раза слаще глюкозы, и в 4-5 раз лактозы, которая почти безвкусна.

Полисахариды – крахмал, гликоген, декстрины, целлюлоза и т.д. – углеводы, которые гидролизуются с образованием множества молекул моносахаридов, чаще всего глюкозы.
Чтобы вывести формулу полисахаридов, надо от молекулы глюкозы «отнять» молекулу воды и записать выражение с индексом n: (C 6 H 10 O 5)n . Ведь именно за счет отщепления молекул воды в природе образуются ди- и полисахариды.
Роль углеводов в природе и их цена в жизни человека крайне важна. Образуясь в клетках растений в результате фотосинтеза, они выступают источником энергии для клеток животных. В первую очередь это относится к глюкозе.
Многие углеводы (крахмал, гликоген, сахароза) выполняют запасающую функцию, роль резерва питательных веществ.
Кислоты ДНК и РНК, в состав которых входят некоторые углеводы (пентозы-рибозы и дезоксирибоза), выполняют функции передачи наследственной информации.
Целлюлоза – строительный материал растительных клеток — играет роль каркаса для оболочек этих клеток. Другой полисахарид – хитин — выполняет аналогичную роль в клетках некоторых животных: образуется наружный скелет членистоногих (ракообразных), насекомых, паукообразных.
Углеводы в конечном итоге служат источником нашего питания: мы потребляет зерно, содержащее крахмал, или скармливаем его животным, в организме которых крахмал превращается в жиры и белки. Самая гигиеническая одежда изготовлена из целлюлозы или продуктов на ее основе: хлопка и льна, вискозного волокна, ацетатного шелка. Деревянные дома и мебель построены из той же целлюлозы, образующей древесину. В основе производства кино- и фотопленки все та же целлюлоза. Книги, газеты, письма, денежные банкноты – все это продукция целлюлозно-бумажной промышленности. Значит, углеводы обеспечивают нас самым необходимым для жизни: пищей, одеждой, кровом.
Кроме того, углеводы участвуют в построении сложных белок, ферментов, гормонов. Углеводами являются и такие жизненно необходимые вещества, как гепарин (он играет важнейшую роль – предотвращает свертываемость крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промышленности – вспомните знаменитый торт «Птичье молоко»).
Необходимо подчеркнуть, что единственным видом энергии на Земле (помимо ядерной, разумеется) является энергия Солнца, а единственным способом ее аккумулирования для обеспечения жизнедеятельности всех живых организмов является процесс фотосинтеза, протекающий в клетках и приводящий к синтезу углеводов из воды и углекислого газа. Именно при этом превращении образуется кислород, без которого жизнь на нашей планете была бы невозможна:
6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2



Физические свойства и нахождение в природе

Глюкоза и фруктоза – твердые и бесцветные вещества кристаллические вещества. Глюкоза содержится в соке винограда (отсюда и название «виноградный сахар») вместе с фруктозой, которая содержится в некоторых фруктах и плодах (отсюда и название «фруктовый сахар»), составляет значительную часть меда. В крови человека и животных постоянно содержится около 0,1% глюкозы (80-120 мг в 100 мл крови). Наибольшая ее часть (около 70%) подвергается в тканях медленному окислению с выделением энергии и образованием конечных продуктов – воды и углекислого газа (процесс гликолиза):
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O + 2920 кДж
Энергия, выделяемая при гликолизе, в значительной степени обеспечивает энергетические потребности живых организмов.
Повышение содержания глюкозы в крови уровня 180 мг на 100 мл свидетельствует о нарушении углеводного обмена и развитии опасного заболевания – сахарного диабета.

Строение молекулы глюкозы

О строении молекулы глюкоз можно судить на основании опытных данных. Она реагирует с карбоновыми кислотами, образуя сложные эфиры, содержащие от 1 до 5 остатков кислоты. Если раствор глюкозы прилить к свежеполученному гидроксиду меди(||), то осадок растворяется и получается ярко-синий раствор соединения меди, т. е. происходит качественная реакция на многоатомные спирты. Следовательно, глюкоза является многоатомным спиртом. Если же подогреть полученный раствор, то вновь выпадает осадок, то уже красноватого цвета, т.е. произойдет качественная реакция на альдегиды. Аналогично, если раствор глюкозы разогреть с аммиачным раствором оксида серебра, то произойдет реакция «серебряного зеркала». Следовательно, глюкоза является одновременно многоатомным спиртом и альдегидом — альдегидоспиртом . Попробуем вывести структурную формулу глюкозы. Всего атомов углерода в молекуле C 6 H 12 O 6 шесть. Один атом входит в состав альдегидной группы:
Остальные пять атомов связываются с гидроксигруппами. И наконец с учетом того, что углерод четырехвалентен, расположим атомы водорода:
или:
Однако установлено, что в растворе глюкозы помимо линейных(альдегидных) молекул существуют молекулы циклического строения, из которых состоит кристаллическая глюкоза. Превращение молекул линейной формы в циклическую можно объяснить, если вспомнить, что атомы углерода могут свободно вращаться вокруг σ- связей, расположенных под углом 109 о 28 / при этом альдегидная группа (1-й атом углерода) может приблизиться к гидроксильной группе пятого атома углерода. В первой, под влиянием гидроксигруппы разрывается π – связь: к атому кислорода присоединяется атом водорода, и «потерявший» этот атом кислород гидроксигруппы замыкает цикл.
В результате такой перегруппировки атомов образуется циклическая молекула. Циклическая формула показывает не только порядок связи атомов, но и их пространственное расположение. В результате взаимодействия первого и пятого атомов углерода, появляется новая гидроксигруппа у первого атома, которая может занять в пространстве два положения: над и под плоскостью цикла, а потому возможны две циклические формы глюкозы:
1) α- форма глюкозы – гидроксильные группы при первом и втором атомах углерода расположены по одну сторону кольца молекулы;
2) β- формы глюкозы – гидроксильные группы находятся по разные стороны кольца молекулы:
В водном растворе глюкозы в динамическом равновесии находятся три ее изомерные формы: циклическая α- форма, линейная (альдегидная) форма и циклическая β- форма.
В установившемся динамическом равновесии преобладает β-форма (около 63%), так как она энергетически предпочтительнее — у нее ОН- группы у первого и второго углеродных атомов по разные стороны цикла. У α-формы (около 37%) ОН-группы у тех же углеродных атомов расположены по одну сторону плоскости, поэтому она энергетически меньше устойчива, чем β-форма. Доля же линейной формы в равновесии очень мала (всего около 0,0026%).
Динамическое равновесие можно сместить. Например, при действии на глюкозу аммиачного раствора оксида серебра количество ее линейной (альдегидной) формы, которой в растворе очень мало, пополняется все время за счет циклических форм, и глюкоза полностью подвергается окислению до глюконовой кислоты.
Изомером альдегидспирта глюкозы является кетоноспирт – фруктоза.

Химические свойства глюкозы

Химические свойства глюкозы, как и любого органического вещества, определяются ее строением. Глюкоза обладает двойственной функцией, являясь и альдегидом, и многоатомным спиртом, поэтому для нее характерны свойства и многоатомных спиртов и альдегидов.
Реакции глюкозы, как многоатомного спирта
Глюкоза дает качественную реакцию многоатомных спиртов (вспомните глицерин) со свежеполученным гидроксидом меди (ǀǀ), образуя ярко-синий раствор соединения меди (ǀǀ).
Глюкоза, подобно спиртам, может образовывать сложные эфиры.
Реакции глюкозы, как альдегида
1. Окисление альдегидной группы. Глюкоза, как альдегид, способна окисляться к соответствующую (глюконовую) кислоту и давать качественные реакции на альдегиды. Реакция «Серебряного зеркала» (при нагревании):
CH 2 -OH-(CHOH) 4 -COH + Ag 2 O → CH 2 OH-(CHOH) 4 -COOH + 2Ag↓
Реакция со свежеполученным Cu(OH) 2 при нагревании:
CH 2 -OH-(CHOH) 4 -COH + 2 Cu(OH) 2 → CH 2 -OH-(CHOH) 4 -COOH + Cu 2 O↓ +H 2 O

2. Восстановление альдегидной группы. Глюкоза может восстанавливаться в соответствующий спирт (сорбит):
CH 2 -OH-(CHOH) 4 -COH + H 2 → CH 2 -OH-(CHOH) 4 — CH 2 -OH
Реакции брожения
Эти реакции протекают под действием особых биологических катализаторов белковой природы — ферментов.

1. Спиртовое брожение:
C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2
Издавна применяемое человеком для получения этилового спирта и алкогольных напитков.
2. Молочнокислое брожение:
которое составляет основу жизнедеятельности молочнокислых бактерий и происходит при скисании молока, квашении капусты и огурцов, силосовании зеленых кормов



Глюкоза в переводе с греческого языка обозначает "сладкий". В природе в больших количествах она встречается в соках ягод и фруктов, в том числе в виноградном соке, отчего и имеет в народе название "винный сахар".

История открытия

Глюкоза была открыта в начале XIX века английским врачом, химиком и философом Уильямом Праутом. Широкую известность данное вещество получило после того, как в 1819 году Анри Бракконо извлек его из древесных опилок.

Физические свойства

Глюкоза представляет собой бесцветный кристаллический порошок сладкого вкуса. Она хорошо растворима в воде, концентрированной серной кислоте, и реактиве Швейцера.

Строение молекулы

Как и все моносахариды, глюкоза является гетерофункциональным соединением (в состав молекулы входят несколько гидроксильных и одна карбоксильная группа). В случае глюкозы карбоксильной группой является альдегидная.

Общая формула глюкозы C6H12O6. Молекулы данного вещества имеют циклическое строение и два пространственных изомера альфа- и бета-формы. В твердом состоянии практически на 100% преобладает альфа форма. В растворе же более устойчива бета-форма (она занимает приблизительно 60%). Глюкоза является конечным продуктом гидролиза всех поли- и дисахаридов, то есть получение глюкозы происходит в подавляющем количестве случаев именно данным путем.

Получение вещества

В природе глюкоза образуется в растениях в результате фотосинтеза. Рассмотрим промышленные и лабораторные способы получения глюкозы. В лаборатории данное вещество является результатом альдольной конденсации. В промышленности же самым распространенным способом является получение глюкозы из крахмала.

Крахмал - это полисахарид, моночасти которого и являются молекулами глюкозы. То есть для ее получения надо разложить полисахарид на моночасти. Каким образом осуществляется данный процесс?

Получение глюкозы из крахмала начинается с того, что крахмал помещают в емкость с водой и перемешивают (крахмальное молоко). Другую емкость с водой доводят до кипения. Стоит отметить, что кипящей воды должно быть в два раза больше, чем крахмального молока. Для того чтобы реакция получения глюкозы прошла до конца, необходим катализатор. В данном случае им выступает соляная или Рассчитанное количество добавляется в емкость с кипящей водой. Затем медленно заливается крахмальное молоко. В данном процессе очень важно не получить клейстер, если все же он образовался, следует продолжать кипячение до полного его исчезновения. В среднем кипячение занимает полтора часа. Для того чтобы быть уверенными, что крахмал полностью гидролизовался, надо провести качественную реакцию. В отобранную пробу добавляется йод. Если жидкость приобретает синюю окраску, значит, гидролиз не закончен, если же становится бурой или красно-бурой, значит, крахмала в растворе больше нет. Но в данном растворе находится не только глюкоза, получение ее было с помощью катализатора, а это значит, что и кислота имеет место быть. Как удалить кислоту? Ответ прост: при помощи нейтрализации чистым мелом и мелко раскрошенным фарфором.

Нейтрализация проверяется Далее происходит фильтрация полученного раствора. Дело за малым: полученную бесцветную жидкость следует выпарить. Образованные кристаллы и есть наш конечный результат. Теперь рассмотрим получение глюкозы из крахмала (реакция).

Химическая суть процесса

Данное уравнение получения глюкозы представлено до промежуточного продукта - мальтозы. Мальтоза - дисахарид, состоящий из двух молекул глюкозы. Наглядно видно, что способы получения глюкозы из крахмала и из мальтозы одинаковые. То есть в продолжение реакции можем поставить следующее уравнение.

В завершение стоит подытожить необходимые условия для того, чтобы получение глюкозы из крахмала прошло успешно.

Необходимые условия

  • катализатор (соляная или серная кислота);
  • температура (не менее 100 градусов);
  • давление (достаточно атмосферного, но увеличение давления ускоряет процесс).

Данный метод самый простой, с большим выходом конечного продукта и минимальными энергетическими затратами. Но он не единственный. Получение глюкозы осуществляется так же из целлюлозы.

Получение из целлюлозы

Суть процесса практически полностью соответствует предыдущей реакции.

Приведено получение глюкозы (формула) из целлюлозы. На деле же этот процесс намного сложнее и энергозатратнее. Итак, продуктом, вступающим в реакцию, являются отходы из деревоперерабатывающей промышленности, измельченные до фракции, размер частиц в которой 1,1 - 1,6 мм. Данный продукт обрабатывается сперва уксусной кислотой, затем перекисью водорода, затем серной кислотой при температуре не ниже 110 градусов и гидромодуле 5. Длительность этого процесса 3-5 часов. Затем, на протяжение двух часов проходит гидролиз серной кислотой при комнатной температуре и гидромодуле 4-5. Затем происходит разбавление водой и инверсия в течение приблизительно полутора часов.

Методы количественного определения

Рассмотрев все способы получения глюкозы, следует изучить методы ее количественного определения. Бывают ситуации, когда в технологическом процессе должен участвовать лишь раствор, содержащий глюкозу, то есть процесс выпаривания жидкости до получения кристаллов - лишний. Тогда возникает вопрос, как определить, какая концентрация данного вещества в растворе. Полученное количество глюкозы в растворе определяют спектрофотометрическим, поляриметрическим и хроматографическим методами. Существует и более специфический метод определения - ферментативный (с помощью фермента глюкозидазы). В данном случае подсчет идет уже продуктов действия этого фермента.

Применение глюкозы

В медицине глюкозу используют при интоксикации (это может быть как пищевое отравление, так и деятельность инфекции). В данном случае раствор глюкозы вводят внутривенно с помощью капельницы. Это значит, что в фармации глюкоза является универсальным антиоксидантом. Так же не малую роль данное вещество играет при обнаружении и диагностировании сахарного диабета. Здесь глюкоза выступает как стресс-тест.

В пищевой промышленности и кулинарии глюкоза занимает очень важное место. Отдельно же следует обозначить роль глюкозы в виноделии, пиво- и самогоноварении. Речь идет о таком методе как получение этанола Рассмотрим подробно данный процесс.

Получение спирта

Технология получения спирта имеет две стадии: брожение и перегонку. Брожение, в свою очередь, осуществляется с помощью бактерий. В биотехнологии уже давно выведены культуры микроорганизмов, которые позволяют получить максимальный выход спирта при минимально затраченном времени. В быту же в качестве помощников реакции могут быть использованы обычные столовые дрожжи.

Прежде всего, глюкоза разводится в воде. В другой емкости разводятся используемые микроорганизмы. Далее, полученные жидкости перемешиваются, встряхиваются и помещаются в емкость с Данная трубка соединяется с еще одной (U-образной формы). В середину второй трубки наливается Конец трубки закрывается резиновой пробкой с полой стеклянной палочкой, имеющей оттянутый конец.

Данная емкость помещается в термостат при температуре 25-27 градусов на четверо суток. В трубке с известковой водой будет наблюдаться помутнение, что свидетельствует о вступлении в реакцию с ней углекислого газа. Как только углекислый газ перестанет выделяться, брожение можно считать оконченным. Далее следует стадия перегонки. В лаборатории для дистилляции спирта используют обратные холодильники - приборы, в которых по внешней стенке проходит холодная вода, тем самым охлаждая образовавшийся газ и переводя его обратно в жидкость.

На данном этапе жидкость, которая находится в нашей емкости, следует нагреть до 85-90 градусов. Таким образом испаряться будет спирт, вода же не будет доведена до кипения.

Механизм получения спирта

Рассмотрим получение спирта из глюкозы в уравнении реакции: С6Н12О6 = 2С2Н5ОН + 2СО2.

Итак, можно отметить, что механизм получения этанола из глюкозы весьма прост. Более того, он известен человечеству уже много веков, и доведен практически до совершенства.

Значение глюкозы в жизни человека

Итак, имея определенное представление о данном веществе, его физических и химических свойствах, использовании в разных сферах промышленности, можно сделать вывод, что такое глюкоза. Получение ее из полисахаридов, уже дает понимание того, что, являясь главной составляющей всех сахаров, глюкоза представляет собой незаменимый источник энергии для человека. В результате метаболизма, из данного вещества образуется аденозинтрифосфорная кислота, которая и преобразуется в единицу энергии.

Но не вся глюкоза, которая поступает в организм человека идет на восполнение энергии. В состоянии бодрствования человек превращает лишь 50 процентов полученной глюкозы в АТФ. Остальное преобразуется в гликоген и скапливается в печени. Гликоген с течением времени разрушается, тем самым регулируя уровень сахара в крови. Количественно содержание данного вещества в организме - прямой показатель его здоровья. От количества сахара в крови зависит гормональное функционирование всех систем. Поэтому стоит помнить, что чрезмерное употребление данного вещества может привести к тяжелым последствиям.

Глюкоза на первый взгляд простое и всем понятное вещество. Даже с точки зрения химии её молекулы имеют достаточно простое строение, а химические свойства понятны и знакомы в быту. Но, несмотря на это, глюкоза имеет большое значение как для самого человека, так и для всех сфер его жизнедеятельности.

Химические свойства моносахаридов обусловлены особенностями их строения.

Рассмотрим химические свойства на примере глюкозы.

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

а) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

Соль глюконовой кислоты – глюконат кальция – известное лекарственное средство.

б) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

голубой кирпично-красный

Эти реакции являются качественными на глюкозу как альдегид.

в) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO 3).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

При использовании более сильных алкилирующих средств, каковыми являются, например, йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II) на холоду с образованием глюконата меди (II) дает интенсивное синее окрашивание – качественная реакция на глюкозу как многоатомный спирт.

ярко синий раствор

III. Специфические реакции

1. Горение (а также полное окисление в живом организме):

C 6 H 12 O 6 + 6O 2 6CO 2 +6H 2 O

2. Реакции брожения

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

а) спиртовое брожение

C 6 H 12 O 6 → 2CH 3 –CH 2 OH(этиловый спирт) + 2CO 2

б) молочнокислое брожение

в) маслянокислое брожение

C 6 H 12 O 6 → CH 3 –CH 2 –СН 2 –СОOH(масляная кислота) + 2Н 2 + 2CO 2

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Фруктоза вступает во все реакции, характерные для многоатомных спиртов, однако реакции альдегидной группы, в отличие от глюкозы, для нее не характерны.

Химические свойства рибозы C 5 H 10 O 5 аналогичны глюкозе.

Д) Биологическая роль глюкозы.

D-глюкоза (виноградный сахар) широко распространена в природе: содержится в винограде и других плодах, в меде. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. Уровень глюкозы в крови человека постоянен и находится в пределах 0,08-0,11%. Во всем объеме крови взрослого человека содержится 5-6 г. глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 мин. его жизнедеятельности. При некоторых патологиях, например, при заболевании сахарным диабетом, содержание глюкозы в крови повышается, и избыток её выводится с мочой. При этом количество глюкозы в моче может возрасти до 12% против обычного – 0,1%.

3. Дисахариды.

Олигосахариды - углеводы, молекулы которых содержат от 2 до 8-10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т. д.

Дисахариды - сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в пище человека и животных. По своему строению дисахариды являются гликозидами, в которых две молекулы моносахаридов соединены гликозидной связью.

Строение

1. Молекулы дисахаридов могут содержать два остатка одного моносахарида или два остатка разных моносахаридов;

2. Связи, образующиеся между остатками моносахаридов, могут быть двух типов:

а) в образовании связи принимают участие полуацетальные гидроксилы обеих молекул моносахаридов. Например, образование молекулы сахарозы;

б) в образовании связи принимают участие полуацетальный гидроксил одного моносахарида и спиртовый гидроксил другого моносахарида. Например, образование молекул мальтозы, лактозы и целлобиозы.

Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (- или -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

Среди дисахаридов особенно широко известны мальтоза, лактоза и сахароза.

Мальтоза (солодовый сахар), являющаяся α-глюкопиранозил-(1-4)-α-глюкопиранозой, образуется в качестве промежуточного продукта при действии амилаз на крахмал (или гликоген), содержит два остатка α-D-глюкозы. Название сахара, чей полуацетальный гидроксил участвует в образовании гликозидной связи, оканчивается на "ил".

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

(мальтоза)

Мальтоза составлена из двух остатков D- глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1), участвующий в образовании этой связи, имеет - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как α- (α- мальтоза), так и β- конфигурацию (β- мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например, образует простые и сложные эфиры.

Дисахарид лактоза (молочный сахар) содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это - α-глюкопиранозил-(1-4)-глюкопираноза:

Поскольку в молекуле лактозы имеется свободный полуацетальный гидроксил (в остатке глюкозы), она принадлежит к числу редуцирующих дисахаридов.

Одним из наиболее распространенных дисахаридов является сахароза (тростниковый или свекольный сахар) − обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это − α-глюкопиранозил-(1-2)-β-фруктофуранозид:

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами.

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из α, D- глюкопиранозы и β, D- фруктофуранозы.

(сахароза)

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

Среди природных трисахаридов важное значение имеют немногие. Наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы, которая находится в больших количествах в сахарной свекле и во многих других растениях.

В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

Все они имеют ту же эмпирическую формулу С 12 Н 22 О 11 , т.е. являются изомерами.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Дисахариды – типичные сахароподобные углеводы; это твердые бесцветные кристаллические вещества, очень хорошо растворимое в воде, имеющие сладкие вкус.

Из дисахаридов наибольшее значение имеет сахароза C 12 H 22 O 11:

Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы.