Как определить агрегатное состояние. Плазма – четвертое агрегатное состояние. Как взаимодействуют молекулы жидкостей

В зависимости от температуры и давления любое вещество способно принимать различные агрегатные состояния. Каждое такое состояние характеризуется определенными качественными свойствами, которые остаются неизменными в рамках температур и давлений, требуемых для данного агрегатного состояния.

К характерным свойствам агрегатных состояний можно отнести, например, способность тела, находящегося в твердом состоянии, сохранять свою форму, или наоборот – способность жидкого тела изменять форму. Однако, иногда границы между различными состояниями вещества довольно размыты, как в случаях с жидкими кристаллами, либо так называемыми «аморфными телами», которые могут быть упругими как твердые тела и текучими как жидкости.

Переход между агрегатными состояниями может происходить с выделением свободной энергии, изменением плотности, энтропии или других физических величин. Переход от одного агрегатного состояния к другому называется фазовым переходом, а явления, сопровождающие такие переходы – критическими явлениями.

Список известных агрегатных состояний

Твердое тело

Твердые тела, атомы или молекулы которых не образуют кристаллическую решетку.

Твердые тела, атомы или молекулы которых образуют кристаллическую решетку.

Мезофаза

Жидкий кристалл – это такое фазовое состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов.

Жидкость

Состояние вещества при температурах, выше температуры плавления и ниже температуры кипения.

Жидкость, температура которой превышает температуру кипения.

Жидкость, температура которой меньше температуры кристаллизации.

Состояние жидкого вещества при отрицательном давлении, вызываемым силами Ван-дер-Ваальса (силами притяжения между молекулами).

Состояние жидкости при температуре выше критической точки.

Жидкость, на свойства которой влияют квантовые эффекты.

Состояние вещества, имеющего очень слабые связи между молекулами или атомами. Не поддается математическому описанию идеального газа.

Газ, на свойства которого влияют квантовые эффекты.

Агрегатное состояние, представленное набором отдельных заряженных частиц, суммарный заряд которых в любом объеме системы равен нулю.

Состояние вещества, при котором оно представляет собой набор глюонов, кварков и антикварков.

Кратковременное состояние, во время которого глюонные силовые поля натягиваются между ядрами. Предшествует кварк-глюонной плазме.

Квантовый газ

Газ, состоящий из фермионов, на свойства которого влияют квантовые эффекты.

Газ, состоящий из бозонов, на свойства которого влияют квантовые эффекты.

В этом разделе мы рассмотрим агрегатные состояния , в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.


1. Состояние твёрдого тела ,

2. Жидкое состояние и

3. Газообразное состояние .


Часто выделяют четвёртое агрегатное состояние – плазму .

Иногда, состояние плазмы считают одним из видов газообразного состояния.


Плазма - частично или полностью ионизированный газ , чаще всего существующий при высоких температурах.


Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.


Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.


Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии . Но по мере нагрева они становятся жидкостями , затем газами . При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы .

Газ

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος ) характеризующееся очень слабыми связями между составляющими его частицами.


Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы .

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество , то есть его свойства не зависят от направления.


При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.


Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.


При сжатии газ может перейти в жидкость , но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К .


Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ - сублимацией .

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниями характеризуется стабильностью формы .


Различают кристаллические и аморфные твёрдые тела .

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение .


В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы .


В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.


В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.


Формы кристаллов


Каждое вещество образует кристаллы совершенно определённой формы.


Разнообразие кристаллических форм может быть сведено к семи группам:


1. Триклинная (параллелепипед),

2. Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная ,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).


Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются в кубической системе . Простейшими формами этой системы являются куб, октаэдр, тетраэдр .


Магний, цинк, лёд, кварц кристализуются в гексагональной системе . Основные формы этой системы – шестигранные призмы и бипирамида .


Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.


Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.


Анизотропия


Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией .


Внутреннее строение кристаллов. Кристаллические решётки.


Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.


Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.


В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток :


1. молекулярные ,

2. атомные ,

3. ионные и

4. металлические .


Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.


  • Атомные кристаллические решётки

  • В узлах атомных решёток находятся атомы . Они связаны друг с другом ковалентной связью .


    Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения.


    Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностью ковалентной связи .


  • Молекулярные кристаллические решётки

  • В узлах молекулярных решёток находятся молекулы . Они связаны друг с другом межмолекулярными силами .


    Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы , за исключением углерода и кремния, все органические соединения с неионной связью и многие неорганические соединения .


    Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.


  • Ионные кристаллические решётки

  • В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы . Они связаны друг с другом силами электростатического притяжения .


    К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов .


    По прочности ионные решётки уступают атомным, но превышают молекулярные.


    Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.


  • Металлические кристаллические решётки

  • В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны .


    Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность


    Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью , а в других – металлической . Поэтому решётку графита можно рассматривать и как атомную , и как металлическую .


    Во многих неорганических соединениях, например, в BeO, ZnS, CuCl , связь между частицами, находящимися в узлах решётки, является частично ионной , а частично ковалентной . Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными .

    Аморфное состояние вещества

    Свойства аморфных веществ


    Среди твёрдых тел встречаются такие, в изломе которых нельзя обнаружить никаких признаков кристаллов. Например, если расколоть кусок обыкновенного стекла, то его излом окажется гладким и, в отличие от изломов кристаллов, ограничен не плоскими, а овальными поверхностями.


    Подобная же картина наблюдается при раскалывании кусков смолы, клея и некоторых других веществ. Такое состояние вещества называется аморфным .


    Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию.


    В то время как кристаллы каждого вещества плавятся при строго определённой температуре и при той же температуре происходит переход из жидкого состояния в твёрдое, аморфные тела не имеют постоянной температуры плавления . При нагревании аморфное тело постепенно размягчается, начинает растекаться и, наконец, становится совсем жидким. При охлаждении оно также постепенно затвердевает .


    В связи с отсутствием определённой температуры плавления аморфные тела обладают другой способностью: многие из них подобно жидкостям текучи , т.е. при длительном действии сравнительно небольших сил они постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении на несколько недель растекается, принимая форму диска.


    Строение аморфных веществ


    Различие между кристаллическим и аморфным состоянием вещества состоит в следующем.


    Упорядоченное расположение частиц в кристалле , отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов – во всём их объёме .


    В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках . Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.

    Это различие можно коротко сформулировать следующим образом:

    • структура кристаллов характеризуется дальним порядком ,
    • структура аморфных тел – ближним .

    Примеры аморфных веществ.


    К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др.


    Переход из аморфного состояния в кристаллическое.


    Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии. Диоксид кремния SiO 2 встречается в природе в виде хорошо образованных кристаллов кварца , а также в аморфном состоянии (минерал кремень ).


    При этом кристаллическое состояние всегда более устойчиво . Поэтому самопроизвольный переход из кристаллического вещества в аморфное невозможен, а обратное превращение – самопроизвольный переход из аморфного состояния в кристаллическое – возможно и иногда наблюдается.


    Примером такого превращения служит расстеклование – самопроизволная кристаллизация стекла при повышенных температурах, сопровождающаяся его разрушением.


    Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава.


    У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка долей-десятков миллисекунд. Для стёкол достаточно намного меньшей скорости охлаждения.


    Кварц (SiO 2 ) также имеет низкую скорость кристаллизации. Поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.

    Жидкости

    Жидкость – промежуточное состояние между твёрдым телом и газом.


    Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам , по другим – к твёрдым телам .


    С газами жидкости сближает, прежде всего, их изотропность и текучесть . Последняя обуславливает способность жидкости легко изменять свою форму.


    Однако высокая плотность и малая сжимаемость жидкостей приближает их к твёрдым телам .


    Способность жидкостей легко изменять свою форму говорит об отсутствии в них жёстких сил межмолекулярного взаимодействия.


    В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объём, указывает на присутствие хотя и не жёстких, но всё же значительных сил взаимодействия между частицами.


    Соотношение потенциальной и кинетической энергии.


    Для каждого агрегатного состояния характерно своё соотношение между потенциальной и кинетической энергиями частиц вещества.


    У твёрдых тел средняя потенциальная энергия частиц больше их средней кинетической энергии. Поэтому в твёрдых телах частицы занимают определённые положения друг относительно друга и лишь колеблются относительно этих положений.


    Для газов соотношение энергий обратное , вследствии чего молекулы газов всегда находятся в состоянии хаотического движения и силы сцепления между молекулами практически отсутствуют, так что газ всегда занимает весь предоставленный ему объём.


    В случае жидкостей кинетическая и потенциальная энергия частиц приблизительно одинаковы , т.е. частицы связаны друг с другом, но не жёстко. Поэтому жидкости текучи, но имеют постоянный при данной температуре объём.


    Стуктуры жидкостей и аморфных тел схожи.


    В результате применения к жидкостям методов структурного анализа установлено, что по структуре жидкости подобны аморфным телам . В большинстве жидкостей наблюдается ближний порядок – число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всём объёме жидкости.


    Степень упорядоченности частиц у различных жидкостей различна. Кроме того, она изменяется при изменении температуры.


    При низких температурах, незначительно превышающих температуру плавления данного вещества, степень упорядоченности расположения частиц данной жидкости велика.


    С ростом температуры она падает и по мере нагревания свойства жидкости всё больше и больше приближаются к свойствам газа . При достижении критической температуры различие между жидкостью и газом исчезает.


    Вследствии сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твёрдым телам относят только вещества в кристаллическом состоянии.


    Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах в отличие от обычных жидкостей частицы имеют незначительную подвижность – такую же как в кристаллах.

    Определение

    Агрегатные состояния вещества (от латинского aggrego -- присоединяю, связываю) -- это состояния одного и того же вещества твердое, жидкое, газообразное.

    При переходе из одного состояния в другое происходит скачкообразное изменение энергии, энтропии, плотности и других характеристик вещества.

    Твердые и жидкие тела

    Определение

    Твердыми телами называются тела, отличающиеся постоянством формы и объема.

    В них межмолекулярные расстояния малы и потенциальная энергия молекул сравнима с кинетической. Твёрдые тела делятся на два вида: на кристаллические и аморфные. В состоянии термодинамического равновесия пребывают лишь кристаллические тела. Аморфные же тела по сути представляют метастабильные состояния, которые по своему строению приближаются к неравновесным, медленно кристаллизующимся жидкостям. В аморфном теле идет очень медленный процесс кристаллизации, процесс постепенного перехода вещества в кристаллическую фазу. Отличие кристалла от аморфного твёрдого тела заключается прежде всего в анизотропии его свойств. Свойства кристаллического тела зависят от направления в пространстве. Различного рода процессы, такие как теплопроводность, электропроводность, свет, звук, распространяются в различных направлениях твёрдого тела по-разному. Аморфные же тела (стекло, смолы, пластмассы) изотpопны, как и жидкости. Отличие аморфных тел от жидкостей состоит только в том, что последние текучи, в них невозможны статические деформации сдвига.

    Кристаллические тела обладают правильным молекулярным строением. Именно правильному строению кристалла обязана анизотропия его свойств. Правильное расположение атомов кристалла образует так называемую кристаллическую решётку. В различных направлениях расположение атомов в решётке различно, что и ведет к анизотропии. Атомы (или ионы, или целые молекулы) в кристаллической решётке совершают беспорядочное колебательное движение около средних положений, которые и рассматриваются как узлы кристаллической решётки. Чем больше температура, тем больше энергия колебаний, а следовательно, и средняя амплитуда колебаний. В зависимости от амплитуды колебаний находится размер кристалла. Рост амплитуды колебаний ведет к росту размеров тела. Так объясняется тепловое расширение твёрдых тел.

    Определение

    Жидкими называют тела, которые имеют определенный объем, но не имеют упругости формы.

    Жидкости отличаются сильным межмолекулярным взаимодействием и малой сжимаемостью. Жидкость занимает промежуточное положение между твёрдым телом и газом. Жидкости, как и газы, изотpопны. Кроме того, жидкость обладает текучестью. В ней, как и в газах, отсутствуют касательные напряжения (напряжения на сдвиг) тел. Жидкости тяжелы, т.е. их удельные веса сравнимы с удельными весами твёрдых тел. Вблизи температур кристаллизации их теплоемкости и другие тепловые характеристики близки к соответствующим характеристикам твёрдых тел. В жидкостях наблюдается до известной степени правильное расположение атомов, но лишь в малых областях. Здесь атомы тоже совершают колебательное движение возле узлов квазикpисталлической ячейки, но в отличие от атомов твёрдого тела они время от времени перескакивают от одного узла к другому. В результате движение атомов будет весьма сложным: оно колебательное, но вместе с тем центр колебаний перемещается в пространстве.

    Газ, испарение, конденсация и плавление

    Определение

    Газ -- такое состояние вещества, в котором расстояния между молекулами велики.

    Силами взаимодействия между молекулами при невысоких давлениях можно пренебречь. Частицы газа заполняют весь объем, который предоставлен газу. Газы можно рассматривать как сильно перегретые или ненасыщенные пары. Особым видом газа является плазма -- это частично ли полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Плазма представляет собой газ из заряженных частиц, которые взаимодействуют между собой с помощью электрических сил на большом расстоянии, но не имеют ближнего и дальнего расположения частиц.

    Вещества могут переходить из одного агрегатного состояния в другое.

    Определение

    Испарение -- это процесс изменения агрегатного состояния вещества, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул.

    Испарение -- это фазовый переход. При испарении часть жидкости или твердого тела переходит в пар. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью называется насыщенным паром. При этом изменение внутренней энергии тела:

    \[\triangle \ U=\pm mr\ \left(1\right),\]

    где m -- масса тела, r -- удельная теплота парообразования (Дж/кг).

    Определение

    Конденсация -- процесс, обратный парообразованию.

    Расчет изменения внутренней энергии происходит по формуле (1).

    Определение

    Плавление -- процесс перехода вещества из твердого состояния в жидкое, процесс изменения агрегатного состояния вещества.

    Когда вещество нагревают увеличивается его внутренняя энергия, следовательно, увеличивается скорость теплового движения молекул. В том случае, если достигнута температура плавления вещества, то кристаллическая решетка твердого тела начинает разрушаться. Связи между частицами разрушаются, возрастает энергия взаимодействия между частицами. Теплота, передаваемая телу, идет на увеличении внутренней энергии этого тела, и часть энергии идет на совершение работы по изменению объема тела при его плавлении. У большинства кристаллических тел объем увеличивается при плавлении, но есть исключения, например, лед, чугун. Аморфные тела не имеют определенной температуры плавления. Плавление является фазовым переходом, который сопровождается скачкообразным изменением теплоемкости при температуре плавления. Температура плавления зависит от вещества и она не изменяется в ходе процесса. При этом изменение внутренней энергии тела:

    \[\triangle U=\pm m\lambda \left(2\right),\]

    где $\lambda $ -- удельная теплота плавления (Дж/кг).

    Процесс обратный плавлению - кристаллизация. Расчет изменения внутренней энергии происходит по формуле (2).

    Изменение внутренней энергии каждого тела системы в случае нагревания или охлаждения можно рассчитать по формуле:

    \[\triangle U=mc\triangle T\left(3\right),\]

    где c - удельная теплоемкость вещества, Дж/(кгК), $\triangle T$- изменение температуры тела.

    При изучении переходов веществ из одних агрегатных состояний в другие невозможно обойтись без так называемого уравнения теплового баланса , которое гласит: суммарное количество теплоты, которое выделяется в теплоизолированной системе, равно количеству теплоты (суммарному), которое в этой системе поглощается.

    По своему смыслу, уравнение теплового баланса -- это закон сохранения энергии для процессов теплообмена в термоизолированных системах.

    Пример 1

    Задание: В теплоизолированном сосуде находятся вода и лед при температуре $t_i= 0^oС$. Масса воды ($m_{v\ })$ и льда ($m_{i\ })$ соответственно равны 0,5 кг и 60 гр. В воду впускается водяной пар массой $m_{p\ }=$10 гр. при температуре $t_p= 100^oС$. Какой станет температура воды в сосуде после установления теплового равновесия? Теплоемкость сосуда не учитывать.

    Решение: Определим, какие процессы происходят в системе, какие агрегатные состояния вещества мы имели и какие получили.

    Водяной пар конденсируется, отдавая тепло.

    Это тепло идет на плавление льда и, возможно, нагрев имеющейся и полученной изо льда воды.

    Проверим сначала, какое количество теплоты выделяется при конденсации имеющейся массы пара:

    здесь из справочных материалов имеем $r=2,26 10^6\frac{Дж}{кг}$- удельная теплота парообразования (применима и для конденсации).

    Для плавления льда необходимо тепла:

    здесь из справочных материалов имеем $\lambda =3,3\cdot 10^5\frac{Дж}{кг}$- удельная теплота плавления льда.

    Получаем, что пар отдает тепла больше, чем требуется, только для расплавления имеющегося льда, следовательно уравнение теплового баланса запишем в виде:

    Теплота выделяется при конденсации пара массой $m_{p\ }$ и остывании воды, которая образуется из пара от температуры $T_p$ до искомой T. Теплота поглощается при плавлении льда массой $m_{i\ }$ и нагревании воды массой $m_v+m_i$ от температуры $T_i$до $T.\ $ Обозначим $T-T_i=\triangle T$, для разности $T_p-T$ получим:

    Уравнение теплового баланса приобретет вид:

    \ \ \[\triangle T=\frac{rm_{p\ }+cm_{p\ }100-лm_{i\ }}{c\left(m_v+m_i+m_{p\ }\right)}\left(1.6\right)\]

    Проведем вычисления, учитывая, что теплоемкость воды табличная $c=4,2\cdot 10^3\frac{Дж}{кгК}$, $T_p=t_p+273=373K,$ $T_i=t_i+273=273K$:

    $\triangle T=\frac{2,26\cdot 10^6\cdot 10^{-2}+4,2\cdot 10^3\cdot 10^{-2}10^2-6\cdot 10^{-2}\cdot 3,3\cdot 10^5}{4,2\cdot 10^3\cdot 5,7\cdot 10^{-1}}\approx 3\left(К\right)$тогда T=273+3=276 (K)

    Ответ: Температура воды в сосуде после установления теплового равновесия станет равна 276 К.

    Пример 2

    Задание: На рисунке показан участок изотермы, отвечающий переходу вещества из кристаллического в жидкое состояние. Что соответствует этому участку на диаграмме p,T?

    Вся совокупность состояний, изображенных на диаграмме p,V горизонтальным отрезком прямой на диаграмме p,T изображается одной точкой, определяющей значения p и T, при которых осуществляется переход из одного агрегатного состояния в другое.

    Любое вещество состоит из молекул, а его физические свойства зависят от того, каким образом упорядочены молекулы и как они взаимодействуют между собой. В обычной жизни мы наблюдаем три агрегатных состояния вещества - твердое, жидкое и газообразное.

    Например, вода может находиться в твердом (лед), жидком (вода) и газообразном (пар) состояниях.

    Газ расширяется, пока не заполнит весь отведенный ему объем. Если рассмотреть газ на молекулярном уровне, мы увидим беспорядочно мечущиеся и сталкивающиеся между собой и со стенками сосуда молекулы, которые, однако, практически не вступают во взаимодействие друг с другом. Если увеличить или уменьшить объем сосуда, молекулы равномерно перераспределятся в новом объеме.

    В отличие от газа при заданной температуре занимает фиксированный объем, однако и она принимает форму заполняемого сосуда - но только ниже уровня ее поверхности. На молекулярном уровне жидкость проще всего представить в виде молекул-шариков, которые хотя и находятся в тесном контакте друг с другом, однако имеют свободу перекатываться друг относительно друга, подобно круглым бусинам в банке. Налейте жидкость в сосуд - и молекулы быстро растекутся и заполнят нижнюю часть объема сосуда, в результате жидкость примет его форму, но не распространится в полном объеме сосуда.

    Твердое тело имеет собственную форму, не растекается по объему контейнера и не принимает его форму. На микроскопическом уровне атомы прикрепляются друг к другу химическими связями, и их положение друг относительно друга фиксировано. При этом они могут образовывать как жесткие упорядоченные структуры - кристаллические решетки, - так и беспорядочное нагромождение - аморфные тела (именно такова структура полимеров, которые похожи на перепутанные и слипшиеся макароны в миске).

    Выше были описаны три классических агрегатных состояния вещества. Имеется, однако, и четвертое состояние, которые физики склонны относить к числу агрегатных. Это плазменное состояние. Плазма характеризуется частичным или полным срывом электронов с их атомных орбит, при этом сами свободные электроны остаются внутри вещества.

    Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия, а соответственно и свойства вещества.

    Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

    Особенностью гидро- и пневмоприводов является то, что для создания сил, моментов сил и перемещений в машинах эти типы приводов используют энергию соответственно жидкости либо воздуха или другого газа.

    Жидкость, используемая в гидроприводе, называется рабочей жидкостью (РЖ).

    Для уяснения особенностей применеия РЖ и газов в приводах необходимо вспомнить некоторые основные сведения об агрегатных состояниях вещества, известные из курса физики.

    Согласно современным воззрениям под агрегатными состояниями вещества (от латинского aggrego - присоединяю, связываю) - понимаются состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров этого вещества.

    В физике принято различать четыре агрегатных состояния вещества: твёрдое, жидкое, газообразное и плазму.

    ТВЁРДОЕ СОСТОЯНИЕ (кристаллическое твердое состояние вещества) - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц или упорядоченностью физических свойств.

    ЖИДКОЕ СОСТОЯНИЕ - это агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится). Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов. Частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

    Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали.

    ГАЗООБРАЗНОЕ СОСТОЯНИЕ (от французского gaz, происшедшего, в свою очередь, от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

    Газы можно рассматривать как значительно перегретые или малонасыщенные пары жидкостей. Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым. Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1 м3 массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

    ПЛАЗМОЙ называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

    Как видно из изложенного выше жидкости способны сохранять объем, но не способны самостоятельно сохранять форму. Первое свойство сближает жидкость с твердым телом, второе -- с газом. Оба эти свойства не являются абсолютными. Все жидкости сжимаются, хотя и значительно слабее, чем газы. Все жидкости оказывают сопротивление изменению формы, смещению одной части объема относительно другой, хотя и меньшее, чем твердые тела.